NASA/TM-2002-210004/Rev3-Vol2

James L. Mueller¹ and Giulietta S. Fargion² Editors

¹ CHORS, San Diego State University, San Diego, California ² Science Applications International Corporation, Beltsville, Maryland

Ocean Optics Protocols For Satellite Ocean Color Sensor Validation, Revision 3, Volume 2

J. L. Mueller, C. Pietras, S. B. Hooker, D. K. Clark, A. Morel, R. Frouin, B.G. Mitchell, R. R. Bidigare, C. Trees, J. Werdell, G. S. Fargion, R. Arnone, R. W. Austin, S. Bailey, W. Broenkow, S. W. Brown, K. Carder, C. Davis, J. Dore, M. Feinholz, S. Flora, Z.P. Lee, B. Holben, B. C. Johnson, M. Kahru, D. M. Karl, Y. S Kim, K. D. Knobelspiesse, C. R. McClain, S. McLean, M. Miller, C. D. Mobley, J. Porter, R.G. Steward, M. Stramska, L. Van Heukelem, K. Voss, J. Wieland, M. A. Yarbrough and M. Yuen.

National Aeronautical and Space administration

Goddard Space Flight Space Center Greenbelt, Maryland 20771

February 2002

Chapter 12

Above-Water Radiance and Remote Sensing Reflectance Measurement and Analysis Protocols

James L. Mueller¹, Curtiss Davis², Robert Arnone³, Robert Frouin⁴, Kendall Carder⁵, Z.P. Lee⁵, R.G. Steward⁵, Stanford Hooker⁶, Curtis D. Mobley⁷ and Scott McLean⁸

¹Center for Hydro-Optics and Remote Sensing, San Diego State University, California

²Naval Research Laboratory, Washington, District of Columbia

³Naval Research Laboratory, Stennis Space Center, Mississippi

⁴Scripps Institution of Oceanography, University of California, San Diego, California

⁵University of South Florida, St. Petersburg, Florida

⁶NASA, Goddard Space Flight Center, Greenbelt, Maryland

⁷Sequoia Scientific Inc., Redmond, Washington

⁸Satlantic Inc., Halifax, Nova Scotia, Canada

12.1 INTRODUCTION

As an alternative to the in-water methods of Chapters 10 and 11, water-leaving radiance can be measured from the deck of a ship. A shipboard radiometer is used to measure radiance $L_{\rm sfc}\left(\lambda,\theta,\phi\in\Omega_{\rm FOV};\theta_{\rm o}\right)$ emanating from the sea surface at zenith angle θ (usually chosen between $30^{\rm o}$ and $50^{\rm o}$) and azimuth angle ϕ (usually chosen between $90^{\rm o}$ and $180^{\rm o}$ away the sun's azimuth $\phi_{\rm o}$). In the convention used here, azimuth angles ϕ are measured relative to the sun's azimuth, *i.e.* $\phi_{\rm o}=0$.

The surface radiance measured with a radiometer having a solid-angle field of view (FOV) of Ω_{FOV} sr may be expressed, following Mobley (1999), as

$$L_{\text{sfc}}(\lambda, \theta, \phi \in \Omega_{\text{FOV}}; \theta_{\text{o}}) = L_{\text{W}}(\lambda, \theta, \phi \in \Omega_{\text{FOV}}; \theta_{\text{o}}) + \rho L_{\text{skv}}(\lambda, \theta_{\text{skv}}, \phi_{\text{skv}}; \theta_{\text{o}}). \quad (12.1)$$

 $L_{\rm w}\left(\lambda,\theta,\phi\in\Omega_{\rm FoV};\theta_{\rm o}\right)$ is water-leaving radiance centered at angles (θ,ϕ) and averaged over $\Omega_{\rm FoV}$ [as weighted by the radiometer's directional response function (see Chapter 5)]. $L_{\rm sky}\left(\lambda,\theta_{\rm sky},\phi_{\rm sky}\in\Omega_{\rm FoV}';\theta_{\rm o}\right)$ is sky radiance measured with the radiometer looking upward at angles $(\theta_{\rm sky},\phi_{\rm sky})$. In practice, θ and $\theta_{\rm sky}$ are numerically equal angles in the nadir and zenith directions, respectively, and the sea and sky viewing azimuths $\phi=\phi_{\rm sky}$. The reflectance factor ρ is operationally defined as the total skylight actually reflected from the wave-roughened sea surface into direction (θ,ϕ) divided by sky radiance measured with the radiometer from direction $(\theta_{\rm sky},\phi_{\rm sky})$, both quantities being averaged over $\Omega_{\rm FOV}$ (Mobley 1999). Remote sensing reflectance is then determined, using water-leaving radiance calculated from (12.1), as

$$R_{\text{RS}}\left(\lambda, \theta, \phi \in \Omega_{\text{FOV}}; \theta_{o}\right) = \frac{L_{\text{W}}\left(\lambda, \theta, \phi \in \Omega_{\text{FOV}}; \theta_{o}\right)}{E_{\text{S}}\left(\lambda; \theta_{o}\right)}, \tag{12.2}$$

where $E_S(\lambda;\theta_0)$ is incident spectral irradiance measured above the sea surface. All of the above variables vary with solar zenith angle θ_0 .

A simplified notation is used in Chapters 10 and 11 (and elsewhere in the protocols) when discussing water leaving radiance $L_W(\lambda)$ and remote sensing reflectance $R_{RS}(\lambda)$ derived from in-water profile measurements of $L_u(z,\lambda)$. Because $L_u(z,\lambda)$ is measured viewing the nadir direction, $L_W(\lambda)$ represents radiance leaving the surface in the zenith direction $(\theta,\phi)=(0^o,0^o)$. Therefore, $L_w(\lambda)$ in Chapter 11 corresponds to $L_w(\lambda)$, $L_w(\lambda)$ and $L_w(\lambda)$ and $L_w(\lambda)$ and $L_w(\lambda)$ in the present notation .